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Abstract—In this article, we propose an efficient method for
solving analysis-l1-TV regularization problems with a multi-step
alternating direction method of multipliers (ADMM) approach as
the fast solver. Additionally, we apply it to a real-data magnetoen-
cephalography (MEG) brain imaging problem as well as to signal
reconstruction. In our approach, the inverse problem arising in
MEG or signal reconstruction is formulated as an optimization
problem which we regularize using a combination of analysis-l1
prior together with a total variation (TV) regularization term. We
then formulate an optimization algorithm based on ADMM which
can effectively be used to solve the optimization problems. The
performance of the algorithm is illustrated in practical scenarios.

Index Terms—Analysis-l1-TV-norm, total variation (TV), al-
ternating direction method of multipliers (ADMM), magnetoen-
cephalography (MEG), image reconstruction

I. INTRODUCTION

Magnetoencephalography (MEG, see, e.g., [1]) is a non-

invasive brain imaging method which can be used to observe

the brain activity by measuring the magnetic field generated

by the neurons in the brain. The reconstruction of the brain

activity from the MEG sensor measurements requires solving

an inverse problem [2], which refers to the ill-posed problem of

reconstructing the unknown quantity (in MEG, the brain activity

on the cortex [1]) from a limited number of measurements. One

way to solve such inverse problem is to optimize a regularized

cost function which combines a data-dependent term with an

�1/�2 or total variation penalty term [1], [3]–[8].

Another application where an inverse problem arises is

image reconstruction, where in addition to the classical �2,

it is commonplace to use �1-norm [9], total variation (TV)

norm [10], or their combinations [11]. In particular, the TV

regularization can be used to introduce gradient sparsity, which

is commonly occurring in natural images [12]. It is also possible

to combine the regularization terms leading to �1-TV and �2-

TV based regularization methods [9], [12]–[16]. They have

the ability to preserve edge information and allow for sharp

discontinuities in the solution.

Recently, a new family of analysis-�1-TV regularization

methods has been proposed to achieve high-quality recon-

struction, especially in case of severe corruption [17]–[19].

Assuming an analysis sparse prior, the methods minimize
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a cost function with combined analysis �1-norm and TV

regularization terms. Such analysis sparse methods could

provide more flexibility in modeling of signals than synthesis
sparsity methods [20]. Despite good performance that can be

obtained, the methods remain computationally difficult due

to the non-linearity and non-differentiability [17]. Although

some optimization methods have been proposed to solve these

difficulties, for example, templates for first-order conic solvers

(TFOCS) [21], the primal-dual Newton conjugate gradient

method (pdNCG) [22], and alternating direction methods [16],

there is still a need for efficient and effective methods for

reconstructing high-dimensional signals.
The main contribution of this article is the development of

an efficient method for solving analysis-�1-TV regularization

problems with a multi-step ADMM approach [23] as the fast

solver, which is demonstrated in an MEG inverse problem with

real data, image reconstruction, as well as one-dimensional

signal reconstruction. The advantages of the proposed approach

are low number of iterations needed for convergence and good

convergence speed in terms of CPU time. We empirically

compare the performance of the method against the TFOCS and

pdNCG solvers. The results demonstrate that our method has

a superior convergence speed in terms of number of iterations

and CPU time.

II. PROBLEM FORMULATION

Let the observed signal y ∈ R
ny and the unknown source

signal x ∈ R
nx , where we typically have ny ≤ nx. The sources

and measurements are related according to

y = Mx+ n, (1)

where M is the matrix representation of a linear operator and

n denotes the observation noise that, without loss of generality,

is taken to have an identity covariance matrix. Since the inverse

of the operator M is typically ill-conditioned (e.g. in the case

of blurring filter in image reconstruction), or it does not even

exist (e.g. a forward-operator in MEG source reconstruction),

Eq. (1) defines a non-trivial inverse problem. However, the

prior knowledge about the unknown signal x makes its solution

possible.
Here, we exploit the analysis-sparsity structure of the

signal in some transform domain, and reconstruct x from the
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observation model in (1) by solving an optimization problem.

Specifically, given an analysis operator Ω ∈ R
nx×nx , Ωx is

assumed to be cosparse, that is, Ωx has a small number of

non-zero entries [17]. Similar to synthesis sparsity [20], a

well-studied analysis-�1-sparse approach is [17]–[19]:

min
x

‖y −Mx‖22 , such that ‖Ωx‖1 ≤ T, (2)

where T is a tolerance error, and ‖·‖1 and ‖·‖2 are the �1 and

�2 norms, respectively. The operator Ω can be generated, for

example, by the discrete Fourier transform [9], tight frame [12],

wavelet [24], or learned methods [18], [19]. In addition, we

use a TV-term to promote gradient sparsity, which allows for

sharp discontinuities in the original signal. These considerations

suggest that x can be estimated by the following problem:

x = argmin
x

μ

2
‖y −Mx‖22 + λ ‖Ωx‖1 + ‖x‖tv , (3)

where ‖x‖tv is the discrete TV-norm, and μ and λ > 0
are tuning parameters. Due to the nonlinearity and non-

differentiability, it is difficult to compute (3). In the following

sections, we will propose an efficient algorithm to solve (3)

by the multi-step ADMM (m-ADMM) algorithm .

III. ADMM FOR SIGNAL RECONSTRUCTION

This section presents a new method for solving the com-

bined analysis-�1-TV model based on the standard ADMM

algorithm [23], [25], [26]. ADMM is a versatile algorithm for

solving high-dimensional signal processing problems efficiently.

It decomposes a large global problem into a series of smaller

local sub-problems, and uses the local solutions to compute

the globally optimal solution.

Our solution is a multi-step extension of the ADMM method,

which iteratively updates the multiple primal variables and

the corresponding dual variables of the augmented Lagrangian

function of (3). Specifically, we introduce the auxiliary variables

v and w, and then reformulate (3) in ADMM form as

min
x,v,w

μ

2
‖y −Mx‖22 + λ ‖v‖1 + ‖w‖2 ,

such that v = Ωx, wi = Dix, i = 1, · · · , ny,
(4)

where w = [w1,w2, · · · ,wny ], and Dix ∈ R
d represents the

first-order finite difference of x at i:th component in d different

directions.

Let Lρ(x,v,w;η, ζ) be the augmented Lagrangian function

of (4) which is defined as follows

Lρ(x,v,w;η, ζ) � μ

2
‖y −Mx‖22 + λ ‖v‖1 + ‖w‖2

+ η�(v −Ωx) +
ρ1
2

‖v −Ωx‖22
+ ζ�(w −Dx) +

ρ2
2

‖w −Dx‖22 ,
(5)

where D = [D1, D2, · · · , Dny
], η ∈ R

nx and ζ ∈ R
d×ny are

the Lagrange multipliers, and ρ1, ρ2 > 0 are penalty parameters.

Since the variables in Lρ(x,v,w;η, ζ) are coupled together,

it is difficult to solve them simultaneously. Therefore, we apply

a method that separates (5) into local sub-problems.

In each iteration, the function (5) is minimized over x, v,

and w separately, one after the other, followed by two dual

updates for η and ζ. For example, starting at x = xk, v = vk,

w = wk, η = ηk and ζ = ζk:

xk+1 = argmin
x

Lρ(x,v
k,wk;ηk, ζk) (6a)

vk+1 = argmin
v

Lρ(x
k+1,v,wk;ηk, ζk) (6b)

wk+1 = argmin
w

Lρ(x
k+1,vk+1,w;ηk, ζk) (6c)

ηk+1 = ηk + ρ1(Ωxk+1 − vk+1) (6d)

ζk+1 = ζk + ρ2(Dxk+1 −wk+1). (6e)

The efficiency of m-ADMM relies on the fact that its sub-

problems have exact solutions or can be solved effectively to

high accuracy. Explicit solutions to the above sub-problems

are the following.

1) Solving x sub-problem. The minimization in (6a) is a

quadratic optimization problem. It can be analytically solved

by direct dense or sparse matrix computations. Moreover, under

periodic boundary conditions, the computations can utilize fast

transforms such as the fast Fourier transform (FFT) [15] or

wavelet transform [24]. However, when the primal variable x
is high-dimensional, the optimization problem (6a) is costly

to solve because the matrix computations Ω�Ω, D�D and

M�M are involved in the quadratic penalty terms. Thus,

the problem (6a) is usually redefined to avoid the expensive

computations. One approach is to linearize the quadratic term

with adding a proximal term [27]. Here, we introduce a

proximal term 1
2

∥∥x− xk
∥∥2
G

with G := 1
δ I − (ρ1Ω

�Ω +
ρ2D

�D + μM�M) so that no matrix inversion is required.

We use only the first-order optimality condition and effectively

computes the matrix-vector multiplications. Then, the solution

can be seen as linearizing the quadratic penalty term using the

gradient at xk plus a proximal term 1
2δ

∥∥x− xk
∥∥2
2
.

Typically, the primal variable x in (6a) is obtained by solving

the following problem:

xk+1 = argmin
x

Lρ(x,v
k,wk;ηk, ζk) +

1

2

∥∥∥x− xk
∥∥∥2
G

= argmin
x

μ

2
‖y −Mx‖22 +

ρ1
2

∥∥∥∥∥vk −Ωx+
ηk

ρ1

∥∥∥∥∥
2

2

+
ρ2
2

∥∥∥∥∥wk −Dx+
ζk

ρ2

∥∥∥∥∥
2

2

+
1

2
(x− xk)�G(x− xk),

(7)

which is quadratic in x and therefore

xk+1 = xk − δ(Ω�ηk +D�ζk) + δρ1Ω
�(Ωxk − vk)

+ δρ2D
�(Dxk −wk) + δμM�(y −Mxk).

(8)

2) Solving v,w sub-problems. Fixing xk, ηk and ζk, we

can sequentially update the variables vk+1 in (6b) and wk+1

in (6c). The updating of vk+1 is expressed as

vk+1 = argmin
v

λ ‖v‖1 +
ρ1
2

∥∥∥∥∥v −Ωxk+1 +
ηk

ρ1

∥∥∥∥∥
2

2

, (9)
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which is solved by the one-dimensional shrinkage [9], [12]

vk+1 = sign(ek) ◦max(|ek| − λ/ρ1, 0), (10)

where ek = Ωxk+1 + ηk/ρ1, sign represents the signum

function, and ◦ is the pointwise product.

Similarly, the sub-problem for wk+1 can be reduced to the

following minimization problem:

wk+1 = argmin
w

‖w‖2 +
ρ2
2

∥∥∥∥∥w −Dxk+1 +
ζk

ρ2

∥∥∥∥∥
2

2

(11)

and the update of wk+1 is given explicitly by multi-dimensional

shrinkage [9], [12]

wk+1 = max

{∥∥∥tk
∥∥∥
2
− 1

ρ2
, 0

}
tk∥∥tk∥∥

2

(12)

with tk = Dxk+1 + ζk/ρ2.

3) Solving dual sub-problems. Update the dual variables η,

ζ via (6d) and (6e), respectively.

We terminate the iteration when a stopping criterion is

satisfied, for example, when the magnitude of the primal

and dual residuals are below a given, application specific,

threshold [23]. The m-ADMM method is summarized in

Algorithm 1.

Algorithm 1 Combined analysis-�1-TV method by m-ADMM

Input: y, μ, λ, ρ1,ρ2
1: Initialization: Start from initial values x0,v0,w0,η0, ζ0.

Set k = 0, δ ∈ (0, 1
ρ1‖Ω‖2+ρ2‖D‖2+μ‖M‖2 ).

2: repeat
3: update xk+1 by computing (8)

4: update vk+1 by computing (10)

5: update wk+1 by computing (12)

6: update ηk+1 by computing (6d)

7: update ζk+1 by computing (6e)

8: k = k + 1
9: until (stopping criterion is satisfied)

Output: x

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficiency of m-ADMM

in three applications: one-dimensional signal reconstruction,

image reconstruction, and MEG brain imaging.

A. One-dimensional signal reconstruction

In this first experiment, we consider the recovery of a

piecewise continuous signal. Fig. 1(a) shows the synthetic

clean signal xtrue. The corrupted signal y (see Fig. 1(b)) is

obtained using a Gaussian blurring operator M with standard

deviation 0.1 and an additive white Gaussian noise with

standard deviation σ = 0.01. The goal is to estimate the signal

from the corrupted signal. We set ρ1 = 1, ρ2 = 4, μ = 1,

and λ = 0.5 in the experiment. In particular, we solve every

x-iteration by direct matrix computations, because nx is small

(ny = nx = 1001). The result is shown in Fig. 1.

0 2 4 6 8 10
-1
-0.5
0
0.5
1
1.5

(a)

0 2 4 6 8 10
-20

0

20

40

(b)

0 2 4 6 8 10
-1
-0.5
0
0.5
1
1.5

(c)

Figure 1. One-dimensional signal reconstruction experiment: (a) the synthetic
clean signal xtrue, (b) measured signal y, and (c) reconstructed signal (blue
solid line). The red dashed line is the ground truth.

For further comparison, we demonstrate the efficiency of

the proposed method against two state-of-the-art methods:

pdNCG [22] and TFOCS [21]. TFOCS solves the problem (3)

by introducing an extra regularization term and pdNCG uses the

pseudo-Huber as the proximal term of ‖·‖1–norm. Although

the two methods introduce different parameters and terms,

the objective of these is to solve the combined analysis-�1-

TV problem (3). We used the same parameters μ = 1 and

λ = 0.5 in all the methods to make a fair comparison of their

performance. Other parameter settings of the methods were

tuned by trial to give the fastest convergence. Moreover, there

were no prerequisite conditions on matrices M and Ω. All the

experiments were performed on a PC running Intel 2.66 GHz

quad-core CPU.

Fig. 2 shows the performance of three different methods,

where the relative error
∥∥xk − xtrue

∥∥
2
/ ‖xtrue‖2 versus the

number k of iterations are plotted. As can been seen in

Fig. 2, all the methods can reconstruct the clean signal from

the measured signal y and converge to a similar solution

in two noise levels (σ ∈ {0.01, 1}). The proposed method

has superior convergence properties compared to pdNCG and

TFOCS solvers. Table I summarizes the running time of each

solver and the required iteration counts. It should be noted

that pdNCG solver uses around 22.7 seconds to achieve 11

iterations, and our method takes 20 iterations to complete the

run in about 3.4 seconds.

Table I
RUN-TIMES AND ITERATION COUNTS OF THE METHODS.

Methods pdNCG TFOCS m-ADMM
Iteration count 11 200 20
CPU time (sec) 22.7 16.34 3.4

B. Application to image reconstruction

In this experiment, we consider the problem of image

reconstruction of a blurry and noisy image. The corrupted image

y (see Fig. 3 (a)) is generated by an operator M, corresponding

to a Gaussian blur of size 7× 7 and standard deviation 5, and

adding Gaussian noise with standard deviation 10, from the

original ‘pepper’ image1 x.

We initialize the variables v0,w0,η0, ζ0 to be zero. The

parameter μ aims at controlling the smoothness. The large value

of μ may give some visually appealing image reconstruction [9].

1http://sipi.usc.edu/database/database.php
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Figure 2. Relative error versus iteration number k for three mentioned methods
in different noisy cases.

We set μ = 60 in the our experiment. The values of penalty

parameters ρ1 and ρ2 balance the influence of the primal and

dual residuals [23]. The parameters ρ1 and ρ2 are set by first

selecting the ratio, ρ1/ρ2, which influences the convergence

in practice, and then adjusting one of the parameters, which

in turn fixes the remaining one.

To restore x, we choose the dual-tree complex wavelet

transform [28] as Ω, which also satisfies the tight frame

condition with periodic boundary conditions [24], [29]. The

other parameters of our model are set as: ρ1 = 3, ρ2 = 10,

λ = 0.8. We use the index peak signal to noise ratio (PSNR)

and the structural similarity (SSIM) index [30] to measure

the image quality quantitatively. Fig. 3 (b) and (c) show the

restored results from fast TV regularization method [16] with

100 iterations and our proposed method with 30 iterations,

respectively. In order to better visualize the results and their

comparison, the magnified details of the images are shown in

Fig. 3 (d), (e) and (f). As shown in Fig. 3, the proposed method

keeps more structural information and produces a better image

reconstruction than the other approach.

(a) (b) (c)

(d) (e) (f)

Figure 3. Results of image reconstruction (a) corrupted image, PSNR =
24.49dB, SSIM = 0.49; (b) restored image by fast TV regularization method
with k = 100, PSNR = 27.59dB, SSIM = 0.76; (c) restored image by
the proposed method with k = 30, PSNR = 28.55dB, SSIM = 0.86; The
magnified details of the images in (d), (e) and (f).

C. Source reconstruction in MEG

In this section, we apply our method to a real-data MEG

brain imaging problem y = Mx + ε, where y ∈ R
ny is a

whitened measurement, x ∈ R
nx , ny < nx, ε is a measurement

error with identity covariance, and M is a whitened, cortically

constrained, lead-field matrix. Furthermore, the number of

MEG sensors is, ny = 305, which measure the electromagnetic

activity of, nx = 7498, sources.

In order to promote time-continuity, two measurement

instants are considered at a time, y(t) � (y�
t ,y

�
t−1)

�,

corresponding to source activities x(t) � (x�
t ,x

�
t−1)

�, and

the estimate of xt, x̂t, is obtained by taking the appropriate

component of the solution of the following optimization

problem

arg min
x(t)∈R2nx

1

2
||y(t)−I2⊗Mx(t)||22+λ||I2⊗Ωx(t)||1+||Dx(t)||2

where ⊗ is Kronecker’s product, Ω is a matrix of depth-

weights [31], and Dx(t) = xt − xt−1. The parameter, λ,

is selected in correspondence to the recommendations of [31].

The proposed scheme uses ρ1 = ρ2 =
√
2.5/2, and is

compared to the depth-weighted minimum norm [31] solution

as well as to the depth-weighted minimum current solution [3]

on the sample data set from from MNE software package [6],

where a healthy volunteer is subjected to an auditory stimuli.

(a) (b)

(c) (d)

(e) (f)

Figure 4. The source current image of the right hemisphere at the time of
activity and source time courses for �1 (a,b), �2 (c,d), and m-ADMM (e,f)
methods, respectively.
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While all three methods reproduce activity in the superior

temporal gyrus, where the primary auditory cortex is located,

as can be seen from Fig. 4, the benefit of the proposed

method is that it obtains a sparser solution than the �2 method,

while in contrast to both the �1 and �2 methods, producing

vastly smoother time courses, which is neuroscientifically

preferable [5].

V. CONCLUSION

In this article, we have presented an efficient method for

solving analysis-�1-TV regularization problems with a multi-

step ADMM approach as the fast solver. The approach is

derived from ADMM method, and it enables high-dimensional

optimization problems to be solved by decomposing them to

local sub-problems. The proposed approach is applied to one-

dimensional signal reconstruction, image reconstruction, and

MEG source reconstruction. Experimental results demonstrate

the effectiveness of the proposed method in combined analysis-

�1-TV regularization.

As shown by the results, the advantages of our method are

the low number of iterations needed for convergence and good

convergence speed in terms of CPU time. Other advantages are

the conceptual simplicity and parallelizability that would allow

for fast parallel implementations [32], for example, using GPU

computations.
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