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ABSTRACT

A novel multi-focus image fusion approach using coupled
dictionary training is proposed. It exploits the facts that (i) the
patches in example data can be sparsely represented by a cou-
ple of over-complete dictionaries related to the focused and
blurred categories of images and (ii) merging such represen-
tations is better than just selecting the sparsest one in the es-
timate of the original image. Inspired by these observations,
we enforce the similarity of sparse representations between
the focused and blurred image patches by jointly training the
coupled dictionary, and then fuse these representations to gen-
erate an all-in-focus image by a fusion rule. The key charac-
teristics of our approach are bridging the gap between coupled
dictionaries, combining plain averaging and “choose-max” as
an appropriate fusion rule, and forming a more accurate rep-
resentation, compared to existing approaches which simply
admit sparse representation over one dictionary. Extensive ex-
perimental comparisons with state-of-the-art multi-focus im-
age fusion algorithms validate the effectiveness of the pro-
posed approach.

Index Terms— Image fusion, sparse representations,
coupled dictionary training, K-SVD, multi-focus image

1. INTRODUCTION

Because of the limited depth of field in optical lenses of con-
ventional cameras, it is impossible to capture an all-in-focus
image without sacrificing image quality or using specialized
optic sensors [1]. Multi-focus image fusion is an effective
technique to solve this problem by fusing multiple images
captured with different focus distances [2]–[4]. Differences
in employing multi-focus image fusion appear mainly due to
the uses of different fusion domains. The majority of litera-
ture is traditionally categorized into two basic approaches: the
spatial domain-based approach and the transform domain-
based approach. In the first category, the methods such as im-
age fusion based on Laplacian pyramid (LP) [5], spatial fre-
quency (SF) [6], multi-scale weighted gradient (MWG) [7],
and variance [8] directly select the best regions to fuse mul-
tiple images. The second category suggests to apply multi-
scale transforms to decompose source images and construct

an all-in-focus image in the inverse transform domain. Algo-
rithms of this type include discrete wavelet transform (DWT)
[9], curvelet transform (CVT) [2], non-subsampled contourlet
transform (NSCT) [10] among others. These methods are still
sensitive to image misregistration and they may suffer from
undesirable artifacts. Recently, sparsity and overcomplete-
ness have been successfully used for image fusion [11]–[16].
These approaches exploit the fact that natural images can be
compactly expressed over an overcomplete dictionary as a lin-
ear combination of sparse coefficients. The coefficients are
combined suitably to reconstruct an all-in-focus image by the
fusion rule. The success of such approach depends on how
accurately it describes the images and how efficiently it fuses
these coefficients.

In this paper, we propose a novel multi-focus image fu-
sion scheme based on a coupled dictionary. Given pairs of
training images, we seek two dictionaries that lead to the best
possible representation for the focused and blurred categories
of images. Using the two dictionaries, we then introduce the
“averaging” fusion rule to find accurate sparse representation
for reconstructing an all-in-focus image. We aim at improv-
ing the performance of fusion method. The main difference
of the proposed approach from the existing approaches is that
the coupled dictionary is exploited for more compact and ac-
curate representation of different focus images. To improve
the accuracy and efficiency of the proposed approach, new
fusion rule is defined and improved K-SVD-based joint cou-
pled dictionary training algorithm is proposed.

2. PROPOSED METHOD

Accurate sparse representation is crucial to successful image
fusion. The classical model uses one overcomplete dictio-
nary to describe source images which contain the focused
and blurred categories of features. The properties of such
dictionary set the limits on the sparsity of the coefficients.
This paper has at the disposal two pieces of knowledge: the
first one is sparse representations by a coupled dictionary,
and the other is that merging multiple sparse coefficients on
one signal is better than just selecting the sparsest one alone.
With these, it is suggested to jointly learn the coupled dictio-
nary from the focused and blurred image patches, and then
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use these dictionaries to describe original images in terms of
sparse coefficients. Merging these coefficients forces to pro-
duce a better estimated representation by fusion rule. As such,
this contribution differs from previous contributions on the
basis of sparse model used. Such approach can outperform
existing approaches which simply use sparse representation
over one dictionary.

2.1. Coupled Dictionary Training

Given the sampled training vector pair P ,
{
XF ,XB

}
,

we define XF ,
[
xF
1 ,x

F
2 , · · · ,xF

n

]
∈ Rd×n as the matrix

of n sampled focused image vectors and XB ,
[
xB
1 ,x

B
2 ,

· · · ,xB
n

]
∈ Rd×n as the matrix of corresponding blurred im-

age vectors which are created by XF using Gaussian blur
function. Here d is the dimension of the sampled image vec-
tors. Motivated by [17] and [18], we intend to find two dic-
tionaries DF , DB ∈ Rd×N with respect to the same sparse
representation for the couple of feature spaces. The classical
coupled dictionary training problem is expressed as

min
DF ,DB ,Γ

∥∥∥XF −DFΓ
∥∥∥2
2
+
∥∥∥XB −DBΓ

∥∥∥2
2

s.t. ‖Γ‖0 6 T0,
∥∥∥dFi ∥∥∥2

2
6 1,

∥∥∥dBi ∥∥∥2
2
6 1,∀1 6 i 6 N

(1)

where Γ is the joint spare coding of XF and XB , dFi and
dBi are the i-th columns of DF and DB , respectively, and
T0 is the parameter controlling the sparsity penalty. Many
approaches have been developed for learning strategy [18]–
[22]. They separate the objective function (1) into two sub-
problems, namely sparse coding and dictionary updating. The
coefficients are estimated via l1-norm minimization, keep-
ing the two dictionaries fixed alternately, and the dictionaries
are estimated through least squares, keeping the coefficients
fixed. These approaches differ in the estimation of sparse co-
efficients and the update rules of coupled dictionary. How-
ever, the reliability and complexity of learning strategy still
need to be improved.

The K-SVD as an iterative algorithm accelerates the con-
vergence by the alternating update of the dictionary atoms
and the corresponding coefficients in the dictionary updat-
ing stage [23],[24]. Here, we present the coupled dictionary
training procedure using improving K-SVD algorithm. The
main innovation is to keep the supports in Γ intact, seeking
the updates of DF , DB , and Γ, alternately. The correspond-
ing training optimization problem is then given as

min
DF ,DB ,Γ

∥∥∥XF −DFΓ
∥∥∥2
2
+
∥∥∥XB −DBΓ

∥∥∥2
2

s.t. ‖Γ‖0 6 T0, Γ�M = 0

(2)

where � represents element-wise product and the mask ma-
trix M keeps all the zero atoms in Γ intact. Define

{
γT
i

}N
i=1

and
{
mT

i

}N
i=1

as the rows of Γ and M, respectively. Here
mT

i =
{∣∣γT

i

∣∣ = 0
}

. For optimizing dFi , dBi , and γi in the

dictionary updating stage, we exploit the separability of the
objective function in (2) for DF and DF , and decompose it
into the following two problems{

DF ,Γ
}
= arg min

DF ,Γ

∥∥∥∥XF −
N∑
i=1

dFi γ
T
i

∥∥∥∥2
2

(3){
DB ,Γ

}
= arg min

DB ,Γ

∥∥∥∥XB −
N∑
i=1

dBi γ
T
i

∥∥∥∥2
2

(4)

where we introduce the error matrices without the j-th atom,
and directly apply a singular value decomposition (SVD) op-
eration to these matrices. The error matrices are defined as

EF
j ,

XF −
∑
i 6=j

dFi γ
T
i

� (1d ·mT
i

)
(5)

EB
j ,

XB −
∑
i 6=j

dBi γ
T
i

� (1d ·mT
i

)
(6)

where 1d represents the d time replications of mT
i . Such ap-

proach allows to effectively update all the atoms correspond-
ing to XF and XB , without using rank-1 approximation
which performs one atom at a time.

In the sparse coding stage, we search the sparsest matrix
Γ for the signals XF and XB . The sparse representation
problems are then given as

Γ = argmin
Γ

∥∥∥XF −DFΓ
∥∥∥2
2

s.t. ‖Γ‖0 6 T0 (7)

Γ = argmin
Γ

∥∥∥XB −DBΓ
∥∥∥2
2

s.t. ‖Γ‖0 6 T0. (8)

The problems (7) and (8) are solved by the coefficient reuse-
orthogonal matching pursuit (CoefROMP) [24], using two
dictionaries alternately.

2.2. Fusion Rule

Let the source images I1, I2, · · · , In be acquired with dif-
ferent focus parameters from the same scene. Our goal is
to define the fusion rule to merge these images into the all-
in-focus image. Using one dictionary, as in the existing ap-
proach, implies that the focused and blurred features in each
image are represented by one linear combination. Thus, accu-
rate representation for blurred features is impossible. Instead,
we propose to use a collection of sparse representations, with
respect to the focused and blurred categories of dictionaries,
in order to produce a better sparse representation. For each
input image Ik, we generate two sparse representations with
respect to the couple of dictionaries

{
DF ,DB

}
. With the

aim to fuse these images, the sparse model suggests to seek
accurate representations of the salient features. The problems
of generating the two sparsest representations of Ik can be
formulated as

min
∥∥∥AF

k

∥∥∥
1

s.t.
∥∥∥DFAF

k − Ik
∥∥∥2
2
≤ ε (9)

min
∥∥∥AB

k

∥∥∥
1

s.t.
∥∥∥DBAB

k − Ik
∥∥∥2
2
≤ ε (10)
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where ε is the tolerance error parameter, andAF
k andAB

k are
the matrices of sparse coefficients over the dictionaries DF

andDB , respectively.
Based on the fact that each set of sparse coefficients repre-

sents its own salient features, we can conclude that averaging
these coefficients leads to the fusion of different features. For
the j-th column vectors

[
AF

k

]
j

in AF
k and

[
AB

k

]
j

in AB
k ,

j = 1, 2, · · · , N , we compute[
AP

k

]
j
=

([
AF

k

]
j
+
[
AB

k

]
j

)
/2 (11)

where
[
AP

k

]
j

is the j-th vector of averaging coefficients. Af-

ter obtaining the sparse representations for each image, the
sliding window technique is used to divide the sparse vectors[
AP

k

]
j

into M small blocks
[
AP

k

]
j
(m), m = 1, 2, · · · ,M ,

from left-top to right-bottom. For each pair of corresponding
blocks, we then calculate the value

Tk,j (m) =

∥∥∥∥[AP
k

]
j
(m)

∥∥∥∥
1

. (12)

As a general rule, the block with a bigger value is chosen
to construct the fused image. We directly use the following
“choose-max” rule

αj(m) =
[
AP

k

]
j
(m),

{
k, j
}
= argmax

k,j
(Tk,j (m)) . (13)

Here αj is the vector of the composite coefficients A, and[
AP

k

]
j

is the input sparse coefficient of the bigger value

Tk,j (m). We define A , [α1,α2, · · · ,αN ] as the compos-
ite sparse representation where all αj(m), ∀1 6 m 6 M are
gathered. The all-in-focus image is then reconstructed as

IF =DFA. (14)

The overall algorithm is summarized as Algorithm 1.

Algorithm 1 Image fusion from sparsity.

Input: the couple of training dictionaries DF and DB ;
multi-focus source images {Ik}nk=1.

1: Remove the mean intensity for source images.
2: For each 8×8 patch ik from Ik, starting from the upper-

left corner with 1 pixel overlap,
· Solve the optimization problems (9), (10);
· Compute the averaging coefficients using (11);
· Generate the sparse coefficientsαj(m) using (12), (13).

3: End
4: Reconstruct the all-in-focus image using (14).
5: Put the mean intensity into the all-in-focus image IF .

Output: the all-in-focus image IF

3. SIMULATION RESULTS

This section illustrates the improvements for the primary
parameters, and evaluate the proposed approach by visual
comparisons and quantitative assessments. The assessments
are based on two fusion performance metrics: (i) QMI [25],
which measures how well the mutual information from source
images is preserved in the fused image; (ii) QAB/F [26],
which evaluates how well the success of edge information
transfers from source images to the fused image. All the
experiments are performed on a PC running an Inter(R)
Xeon(R) 3.40GHz CPU.

In our simulations, the training data consist of 50,000
8 × 8 focused patches which are randomly sampled from
the database of 40 natural images and 50,000 8 × 8 blurred
patches created by focused patches using Gaussian blur func-
tion. The two dictionaries are produced by the improved
K-SVD algorithm, and initialized with samples from the
training data. Considering the tradeoff between fusion qual-
ity and computation, we fix the dictionary size as 64 × 256,
execute 6 multiple dictionary update cycles (DUC) and 30
iterations, and set the target cardinality as T0 = 6. Exper-
iments converge very quickly, and approximately achieve
a ×2 speedup compared to the standard coupled dictionary
training [17].

We evaluate the proposed approach on the grayscale mul-
tifocus dataset which contain 10 pairs of grayscale images and
30 pairs of artifical images. Fig. 1 shows average fusion per-
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Fig. 1. Fusion performances versus patch size and tolerance
error.
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Fig. 2. Source images “Lab” and the fusion result comparisons. (a) The first source image with focus on the left. (b) The
second source image with focus on the right. Fused images obtained by LP (c), MWG (d), DWT (e), NSCT (f), PCA (g), SRM
(h), SRK (i) and the proposed method (j).

formances versus different patch size and tolerance error ε.
The comparisons adopt sparse representation “choose-max”-
based (SRM) [15] and sparse representation K-SVD-based
(SRK) approaches. The approaches utilize just one learned
focus dictionary obtained by discrete cosine transform and
K-SVD with the same parameters, respectively. As can be
seen in Figs. 1(a) and (c), both QMI and QAB/F slightly
benefit from increasing patch size. When the patch size in-
creases to 9, the running time begins to increase sharply (see
Fig. 1(e)). Balancing computation time and fusion quality, we
set the patch size to 8. Fig. 1(b) shows that the tolerance error
slightly impacts on QAB/F . When ε is larger than 2, QMI is
drastically decreasing. The simulations set ε = 1. Additional
experiments show that QMI and QAB/F drastically decrease
when number of overlapping pixels increases, so the overlap-
ping size is set to 1.

To show the effectiveness of the proposed algorithm, we
compare it with the existing algorithms, including LP [5],
MWG [7], DWT [9], NSCT [10], PCA [1], SRM, and SRK
approaches. The fusion results of the images “Lab” are
shown in Fig. 2, including the magnified details in the lower
right corners. We observe clearly that the LP method obvi-
ously lacks edge information (see Fig. 2(c)) and the DWT
method results in blocking artifacts (see Fig. 2(e)). The fu-
sion methods based on MWG (see Fig. 2(d)) and NSCT (see
Fig. 2(f)) show circle blurring effect around strong bound-
aries. In Figs. 2(g), (h), and (i) some artificial distortions can
be seen. Our approach provides the best visual appearance
(see Fig. 2(j)). Tests with other images lead to similar results,
and are thus omitted. For quantitative comparison, the evalu-

ations on grayscale multi-focus images are shown in Table 1.
The values ofQMI andQAB/F range from 0 to 1, with 1 rep-
resenting the ideal fusion. The bold values are the best results
in the corresponding columns. As can be seen from Table 1,
the proposed approach generally produces better quantitative
results in terms of QMI and QAB/F . The value of QMI

for the proposed approach is always the largest. That means
that the proposed approach well preserves the mutual infor-
mation from different source images. The value of QAB/F

demonstrates that our approach reduces the blocking artifacts
and artificial distortions, and combines the significant edge
information into the fused image.

Table 1. Objective evaluation of the image fusion

Measures
Methods

LP MWG DWT NSCT PCA SRM SPK Ours

QMI 0.9083 0.9045 0.8991 0.9245 0.9381 0.9276 0.9386 0.9432

QAB/F 0.6879 0.7243 0.7013 0.7185 0.6620 0.7214 0.7326 0.7451

4. CONCLUSION

In this paper, we have proposed a novel multi-focus image fu-
sion approach via jointly training the coupled dictionary. The
proposed approach utilizes the couple of dictionaries from the
focused and blurred categories of images to obtain multiple
sparse representations, and exploits an effective and accurate
fusion rule for estimating these representations. Experiments
show that the proposed approach well preserves the edge and
structural information of source images, and drastically re-
duces the blocking artifacts, circle blurring, and artifical dis-
tortions.
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